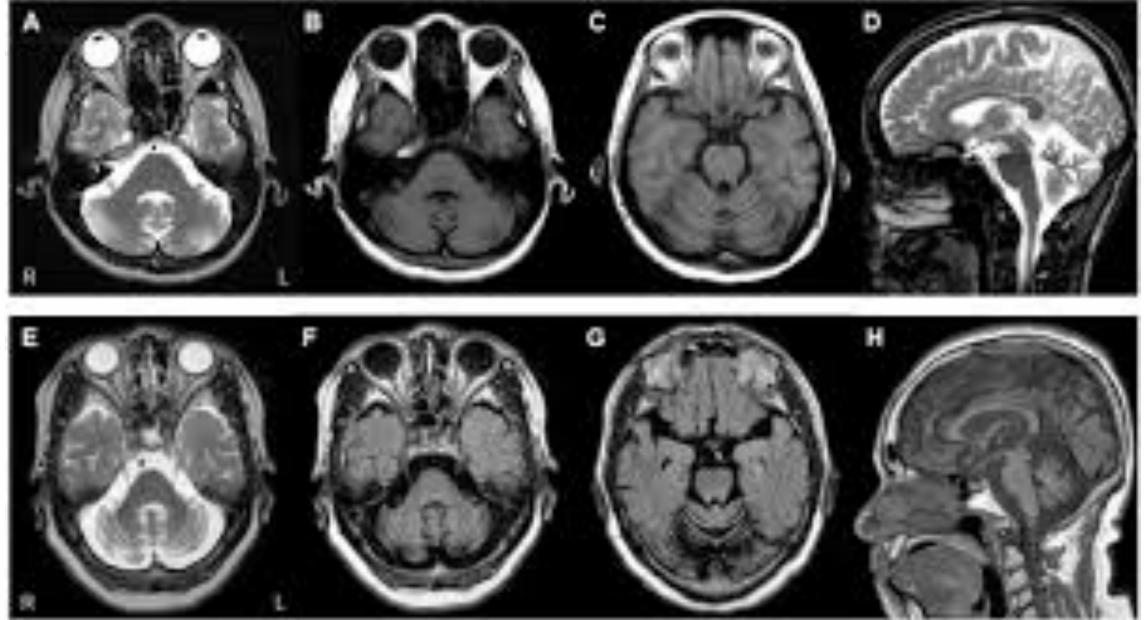
Atypical Huntington's Disease with Ataxia and Parkinsonism F. Asci

Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy

Introduction

Huntington's disease (HD) is a neurodegenerative disorder characterized by choreic movements, behavioral disturbances, and dementia. HD may manifest with atypical syndromes mainly involving younger patients, which may show prominent motor signs likely suggesting other movement disorders [1]. Ataxia and parkinsonism would be neurological signs in HD patients, but when expressed among young adults, it would be challenging to diagnose HD [2-3]. Spinocerebellar ataxias are important confounding, because these disorders may affect even children and may be characterized by dementia. This clinical report suggests the relevance of ataxia and parkinsonism in HD diagnostic work-up.

	Condition	Chromosomal location	Gene	Average age at onset (years)	Clinical characteristics
	HD	4p15	IT15/huntingtin/HD	<30	Chorea, personality changes, dementia
	HDL1	20p12	PRNP	20–40	HD phenocopy, prominent psychiatric features
ţ	HDL2	16q24.3	JPH3	25–45	HD phenocopy, most frequent in black South Africans
	HDL4 (SCA17)	6q27	TBP	25–40	Ataxia, HD phenocopy
	SCA1	6p23	ATXN1	30–40	Ataxia, parkinsonism, dystonia, chorea
	SCA2	12q24	ATXN2	25–45	Ataxia, parkinsonism, dystonia, chorea, neuropathy, dementia
	SCA3	14q32.1	ATXN3	20–50	Ataxia, parkinsonism, dystonia, chorea
	DRPLA	12p13.31	Atrophin 1	<20 >40	Progressive myoclonus epilepsy Ataxia, chorea, dementia
	Neuroferritinopathy	19q13	FTL	40	Chorea, dystonia, oromandibular involvement, parkinsonism, dysarthria
	Benign hereditary chorea	14q13	TITF-1 (and others)	Childhood	Non-progressive chorea (thyroid and pulmonary abnormalities)


Methods

The case report here described refers to two siblings, belonging to a Macedonian family, evaluated for a familial progressive neurological syndrome characterized by ataxic gait, rigidity, bradykinesia, dysarthria, mild facial dyskinesia, and cognitive impairment.

Results Although the presence of a prominent ataxia syndrome initially

Abbreviations: ATXN1, ataxin 1; ATXN2, ataxin 2; ATXN3, ataxin 3; DRPLA, dentatorubral-pallidoluysian atrophy; FTL, ferritir light polypeptide; HD, Huntington's disease; HDL, Huntington's disease-like; JPH3, junctophilin 3; PRNP, prion protein; SCA, spinocerebellar ataxia; TBP, TATA box-binding protein; TITF1, thyroid transcription factor 1.

Figue1. Huntington's disease (HD) related genes

suggested dominant spinocerebellar ataxia, a thorough neurological examination which showed parkinsonism and the genetic testing led to a final diagnosis of HD.

Figue2. Brain MRI of patient #1 showing mild cerebellar atrophy

Conclusions

In this case report, it is highlighted how relevant is to consider the possibility of HD in families manifesting prominent dementia, ataxia, parkinsonism, and facial dyskinesia. The extension of CAG repeats may influence the clinical phenotype and should be further investigated. The description of these clinical cases illustrates the broad range of clinical presentations of HD. Indeed, it is stressed the importance of considering HD in the differential diagnosis of patients presenting movement disorders and positive family history for neurological diseases [1].

References

[1] Roos RA. Huntington's disease: a clinical review. Orphanet J Rare Dis 2010;2013:40.

[2] Rodríguez-Quiroga SA, Gonzalez-Morón D, Garretto N, Kauffman MA. Huntington's


disease masquerading as spinocerebellar ataxia. BMJ Case Rep. 2013 Jul 12;2013.

[3] Squitieri F, Berardelli A, Nargi E, et al. Atypical movement disorders in the early stages of

Huntington's disease: clinical and genetic analysis. Clin Genet 2000;2013:50–6.

